
NASA Ames Research Center | QSS Group, Inc.

Mission Simulation Facility Documentation

Generating HLA based communication classes
from a UML description

Lorenzo Fl�uckiger

January 2002

Contents

1 Introduction 2

2 Mappings 3
2.1 Overview . 3
2.2 Object Classes . 4
2.3 Object Instances . 6
2.4 Interaction Classes . 7
2.5 Messages . 9
2.6 Classes Details . 9

3 The tool: uml2hla 11
3.1 Concept . 11
3.2 Installation . 12
3.3 Usage . 12

4 Problems and Limitations 15

Document updated on August 27, 2002

1

1 Introduction

This document describes a method using the Uni�ed Modeling Language (UML) notation to rep-
resent communication entities in an object-oriented way, and how to map these entities to an HLA
implementation1. Communication entities are the concepts representing objects or messages shared
or exchanged by the participants in a simulation (the federates). An example of one entity could be
a Vehicle. The federates could change the properties of this vehicle (e.g. setWeight) and send mes-
sages to it (e.g. startEngine). These conceptual entities are represented by UML classes. Then
implementation classes based on the HLA communication layer are extracted from these source
classes.

In addition to the proposed method and mappings, a tool is provided to automate the process.
This tool comes in the form of an Addin for Rational Rose UML modeling tool.

Motivation

The classical approach to design a simulation based on the High Level Architecture (HLA) starts
with the description of the simulation using the Object Model Template (OMT) �le format. Then
each federate has to represent this information locally in its Local Run-Time-Infrastructure Com-
ponent (LRC) and manage the HLA objects and HLA interactions existing in the federation. This
process
ow makes the code re
ect directly the HLA philosophy rather than the designer view of
what a simulation should be. In addition, writing the LRC could be very time-consuming and
laborious without the help of some additional layer between the Run-Time-Infrastructure (RTI)
layer and the application code.

The proposed approach starts with a UML description of the communication entities (as classes)
needed in a simulation, and derives from them a set of implementation classes based on HLA.
Section 2 on the following page presents the mappings between these conceptual classes and their
implementation counterpart. Section 3 on page 11 presents the tool developed to automate this
process. These mapping and the tool rely on the Federate ToolKit, which provides a layer on top
of HLA.

The advantages of the proposed method are:

1. Provides a rigorous process to map communication entities to the HLA scheme.

2. Allows changes to the communication implementation independently from the communication
concepts: only the code generator script will have to be adapted to the new requirements of
the implementation, and all the needed classes will follow.

3. Creates independence between the communication concepts needed and their underlying im-
plementation: if a communication layer other than HLA should be used, only the code gen-
eration script needs to be rewritten2.

4. Drastically speeds up the process of generating code to implement the communication entities:
a simple click will generate code for all the needed objects.

1The reader of this document should be familiar with OO, UML, HLA and the FTK
2This is assuming that a communication layer is available at a pretty high level

2

5. Removes the risk of human error in the code and facilitates the debugging process since all
the generated classes are guaranteed to follow the same scheme.

The FTK

The Federate ToolKit (FTK) has been designed to ease the creation of the LRC of each federate
by providing generic objects and interactions classes with all the associated services needed to
participate in a federation. The FTK relies mainly on four classes which capture the corresponding
HLA concepts:

HLAObjectClass represents the HLA concept of Object Class, its attributes and inheritance rela-
tionships.

HLAInteractionClass represents the HLA concept of Interaction Class, its parameters and inheri-
tance relationships.

HLAObjectInstance represents an instance of an HLA object (which could have been created or
discovered by a federate).

HLAInteractionMessage represents a message sent or received in a HLA federation.

These base classes work closely with two important classes:

RFI, the Run-Time-Infrastructure { Federate Interface, which manages all the object/interaction
classes, objects and instances

FTKFederateAmbassador provides all the services that can be provided in a generic way by a
Federate Ambassador

2 Mappings

The simulation designer describes the di�erent communication entities needed in the simulation.
These concepts are captured by UML classes. Each class is composed of attributes and operations.
The inheritance relationship is allowed between classes3. From this UML description, a new set of
classes will be derived to implement these communication needs with the HLA mechanism.

2.1 Overview

To explain the proposed mappings between the concept description and the HLA implementation,
we will follow a simple example composed of the two classes shown in Figure 1 on the following page.
This example shows a simulation composed of Vessels and SailingBoats, the latter inheriting all
the properties of the former. The Vessel class has two attributes: the speed and the heading
of the vessel. The sailing boat has one additional attribute: its heeling. The implementation
classes derived from this description will provide the access methods to these attributes (speedGet,
speedSet, etc). The Vessel class has two operations: dropAnchor, which takes two parameters
and weighAnchors with no parameter. The SailingBoat class provides an additional method:
setSail, which takes only one parameter.

3Multiple inheritance is not allowed since there is no mechanism to support this concept in HLA

3

Vessel

speed : float
heading : int

dropAnchor(anchor : string, chainLenght : float)
weighAnchors()

SailingBoat

heel : int

setSail(sail : int)

Figure 1: Source classes describing the communications objects needed in a simulation.

The general scheme is that each source class will be mapped to one HLA Object Class to handle
the attributes of the source class, and that each operation of the source class will be mapped to
one HLA Interaction Class.

For each source class, the set of derived classes is composed as follows:

� one class to represent the HLA object class concept (based on the HLAObjectClass of FTK)

� one class to represent the the actual instance of theses objects (based on the HLAObjectIn-
stance of FTK)

� one class to represent the HLA interaction class concept4

� one class to represent the HLA interaction class concept for each operation of the source class
(based on the HLAInteractionClass of FTK)

� one class to represent the actual message of the interaction class sent to or received by a
federate (based on the HLAInteractionMessage of FTK)

In the case of the example, the two initial concept classes will be mapped to 12 implementation
classes as shown in Figure 2 on the next page. The relationship between the classes will be discussed
individually in the following sections.

2.2 Object Classes

The concept of HLA Object Classes is captured by classes inheriting from the HLAObjectClass
class of the FTK package. Each conceptual source class is mapped to one and only one specialized
HLAObjectClass, which maintains information about each class (name, handle), its inheritance
relationship (name of parent) and each of its attributes (name, handle, publish, subscribe). Figure 3
on page 6 shows the details of the object classes derived from the example source classes.

4This class will not be implemented with a message and is simply here to regroup all the operations of the source
class under one unique HLA interaction class.

4

H
LA

O
bj

ec
tC

la
ss

(f
ro

m
 F

T
K

)

H
LA

O
bj

ec
tIn

st
an

ce
(f

ro
m

 F
T

K
)

#_
ob

je
ct

C
la

ss
P

tr

H
LA

In
te

ra
ct

io
nC

la
ss

(f
ro

m
 F

T
K

)

H
LA

In
te

ra
ct

io
nM

es
sa

ge
(f

ro
m

 F
T

K
)

#_
in

te
ra

ct
io

nC
la

ss
P

tr

V
es

se
lO

bj
C

la
ss

S
ai

lin
gB

oa
tO

bj
C

la
ss

S
ai

lin
gB

oa
tIn

st
an

ce

V
es

se
lIn

st
an

ce

V
es

se
lIn

te
ra

ct
io

n

V
es

se
lD

ro
pA

nc
ho

rI
nt

er
ac

tio
n

S
ai

lin
gB

oa
tS

et
S

ai
lIn

te
ra

ct
io

n

S
ai

lin
gB

oa
tIn

te
ra

ct
io

n

V
es

se
lW

ei
gh

A
nc

ho
rs

In
te

ra
ct

io
n

M
et

ho
dM

es
sa

ge
(f

ro
m

 F
T

K
) S

ai
lin

gB
oa

tS
et

S
ai

lM
es

sa
ge

V
es

se
lD

ro
pA

nc
ho

rM
es

sa
ge

V
es

se
lW

ei
gh

A
nc

ho
rs

M
es

sa
ge

Figure 2: The set of classes used to implement the desired concept with the HLA mechanism (the
blue classes are not generated but come from the FTK package).

5

Each specialized object class inherits directly from the HLAObjectClass. The inheritance re-
lationship from the source classes (which is also present in the OMT description of a federation)
is expressed with the PARENT attribute of the class. Source classes which have no superclass, will
inherit from the 'ObjectRoot' HLA class: this is expressed with the initialization of the PARENT
attribute to HLAObjectClass::BASE_NAME.

For each attribute of the source class { which corresponds to an HLA attribute in the simulation {
one attribute is created in the implementation class. The value of the generated attribute is the
name of the attribute of the source class and its name is its value in all capital letters. This scheme
maintains the information from the OMT in the LRC. The federate developer can then use in his
program a reference to any attribute using its name. For example:

ftk::HANDLE h = objclass->getAttributeHandle(VesselObjClass::SPEED);

VesselObjClass

CLASS : const char* = "Vessel"
PARENT : const char* = HLAObjectClass::BASE_NAME
SPEED : const char* = "speed"
HEADING : const char* = "heading"

VesselObjClass()
VesselObjClass()
~VesselObjClass()

SailingBoatObjClass

CLASS : const char* = "SailingBoat"
PARENT : const char* = "Vessel"
HEEL : const char* = "heel"

SailingBoatObjClass()
SailingBoatObjClass()
~SailingBoatObjClass()

HLAObjectClass
(from FTK)

Figure 3: Object Classes.

2.3 Object Instances

The local representations of HLA objects inside a federate (LRC) are instances of a class inheriting
from HLAObjectInstance. The inheritance between the HLA object classes is directly re
ected
by the same inheritance in the HLAObjectInstance classes as shown by Figure 4 on the next
page. This allows sub-classes to inherit all the operations of their super-classes. For example,
the method speedGet of the class VesselInstance will be available for any object of the class
SailingBoatInstance. Specialized object instance classes which are derived from source classes
without superclass will inherit directly from the base HLAObjectInstance class which provides all
the necessary services to produce, discover, update and re
ect these HLA objects.

6

Each object instance class has private attributes to store data about the particular instance in
the simulation. The type of the attribute re
ects the type de�ned in the source class. Methods to
access these attribute (Set and Get) are also present.

HLAObjectInstance
(from FTK)

VesselInstance

_speed : float
_heading : int

VesselInstance()
VesselInstance()
VesselInstance()
~VesselInstance()
setAttributeData()
getAttributeData()
<<const>> speedGet()
speedSet()
<<const>> headingGet()
headingSet()

SailingBoatInstance

_heel : int

SailingBoatInstance()
SailingBoatInstance()
SailingBoatInstance()
~SailingBoatInstance()
setAttributeData()
getAttributeData()
<<const>> heelGet()
heelSet()

Figure 4: Object Instances.

2.4 Interaction Classes

The concept of HLA Interaction is captured by classes inheriting from the HLAInteractionClass
class of the FTK package. Each conceptual source class is mapped to one and only one specialized
HLAInteractionClass which maintains information about each interaction class (name, handle,
publish/subscribe), its inheritance relationship (name of parent) and each of its parameters (name,
handle). Figure 5 on the following page shows the details of the interaction classes derived from
the example source classes.

Each specialized interaction class inherits directly from the HLAInteractionClass. The in-
heritance relationship from the source classes (which is also present in the OMT description of a
federation) is expressed with the PARENT attribute of the class. For each source class, an inter-

7

action class with no parameter is created. This empty interaction has for its parent class5 the
MethodInteraction class. This latter class from the FTK package provides one additional param-
eter to all its subclasses: the handle of the destination object6. This enables the regrouping of all
the interactions representing operations of the source class under the same interaction class. No
message of this grouping class will be sent or received in the simulation.

For each parameter of an operation in the source class { which corresponds to an HLA parameter
in the simulation { one attribute is created in the implementation class. The value of the generated
attribute is the name of the parameter of the source class and its name is its value in all capital
letters. This scheme maintains the information from the OMT in the LRC. The federate developer
can then use in his program a reference to any parameter using its name. For example:

ftk::HANDLE h = interaction->getParameterHandle(VesselInteraction::ANCHOR);

HLAInteractionClass
(from FTK)

SailingBoatInteraction

CLASS : const char* = "SailingBoatInteraction"
PARENT : const char* = "MethodInteraction"

SailingBoatInteraction()
SailingBoatInteraction()
~SailingBoatInteraction()

SailingBoatSetSailInteraction

CLASS : const char* = "SailingBoatSetSail"
PARENT : const char* = "SailingBoatInteraction"
SAIL : const char* = "sail"

SailingBoatSetSailInteraction()
SailingBoatSetSailInteraction()
~SailingBoatSetSailInteraction()

VesselDropAnchorInteraction

CLASS : const char* = "VesselDropAnchor"
PARENT : const char* = "VesselInteraction"
ANCHOR : const char* = "anchor"
CHAINLENGHT : const char* = "chainLenght"

VesselDropAnchorInteraction()
VesselDropAnchorInteraction()
~VesselDropAnchorInteraction()

VesselInteraction

CLASS : const char* = "VesselInteraction"
PARENT : const char* = "MethodInteraction"

VesselInteraction()
VesselInteraction()
~VesselInteraction()

VesselWeighAnchorsInteraction

CLASS : const char* = "VesselWeighAnchors"
PARENT : const char* = "VesselInteraction"

VesselWeighAnchorsInteraction()
VesselWeighAnchorsInteraction()
~VesselWeighAnchorsInteraction()

Figure 5: Interactions Classes.

5This PARENT relationship is inheritance in the HLA scheme, but not in the implementation classes.
6HLA does not support the concept of operations acting on the object they belongs to. This is mimicked with a

HLA interaction with its �rst parameter describing the target object of this message.

8

2.5 Messages

In a simulation, each federate can send and receive interactions. These entities are represented
in the LRC by objects of class HLAInteractionMessage (in fact a specialized version of it). The
inheritance in the HLA interaction classes is not re
ected at all in the messages hierarchy: unlike in
HLA, an operation of a source class does not inherit the parameters of the operations in its parent
class. The hierarchy of the message classes is maintained by the HLAInteractionClass classes,
but all the actual messages inherit from the same message class: MethodMessage. This latter class
provides facilities related to the destination object of any message.

Each specialized HLAInteractionMessage class has private attributes to store the parameters
a message will carry in the simulation. The type of the attribute re
ects the parameter type of the
operation in the source class. Methods to access these attributes (Set and Get) are also present.

MethodMessage
(from FTK)

VesselDropAnchorMessage

_anchor : string
_chainLenght : float

VesselDropAnchorMessage()
VesselDropAnchorMessage()
VesselDropAnchorMessage()
~VesselDropAnchorMessage()
<<const>> anchorGet()
anchorSet()
<<const>> chainLenghtGet()
chainLenghtSet()
setParameterData()
getParameterData()

VesselWeighAnchorsMessage

VesselWeighAnchorsMessage()
VesselWeighAnchorsMessage()
VesselWeighAnchorsMessage()
~VesselWeighAnchorsMessage()
setParameterData()
getParameterData()

SailingBoatSetSailMessage

_sail : int

SailingBoatSetSailMessage()
SailingBoatSetSailMessage()
SailingBoatSetSailMessage()
~SailingBoatSetSailMessage()
<<const>> sailGet()
sailSet()
setParameterData()
getParameterData()

Figure 6: Messages.

2.6 Classes Details

2.6.1 \Class" classes

The two classes derived from HLAObjectClass and HLAInteractionClass are very simple and
share the exact same scheme, as shown on Figure 11 on page 16 and Figure 12 on page 17. These
classes only store the properties of a class of entities, the mechanism to manage and access this
data is embedded in their parent class in FTK.

As this type of classes represents a Class concept, only one instance of the class will exist in each
federate. For this reason, the constructor and copy constructor of these classes are private: the only
way to create an instance of such a class is using a Singleton pattern implemented through the FTK
class SingletonHolder. The classes derived from HLAObjectClass and HLAInteractionClass
have a friend which is an instantiated class of the SingletonHolder template (instantiated by the

9

class itself). The user of these classes will get a reference to them by using the Instance method
of the SingletonHolder. The Instance call will return a reference to the desired object class if it
exists, or create �rst such an instance if it does not yet exist.

The attributes of these Class classes are all public and only store data relative to attribute
and parameter names: it allows the federate programmer to reference these attributes/parameters
without having to know their names in the federation or their handles (these latter being only
de�ned at run-time and so not accessible before).

2.6.2 Instances

Instance classes, like SailingBoatInstance shown on Figure 11 on page 16 store attribute data
of object instances existing in the simulation. In the above example, the federate developer can
retrieve the parameter heel thanks to the generated method heelGet. When the attribute is set
with wheelSet, then, in addition to having the given value assigned to the private data member
_heel, the attribute is queued in the RFI to be updated (which will cause an update in the RTI
at the next tick).

All instance classes have three constructors (see FTK documentation for a detailed description).
The default constructor is used by a federate which wants to create a new instance and declare it
to the RTI: the instance is created directly with the correct default arguments. The constructor
with the form SailingBoatInstance(ftk::HANDLE h, HLAObjectClass* cl) is used when the
Federate Ambassador of a federate discovers a new object instance and wants to add it in its local
LRC: the only things the RTI provides on discovery is the new instance handle and the handle on
the class of object (which is used to retrieve the corresponding HLAObjectClass). Finally, the third
constructor of the form SailingBoatInstance (const char* className) is called by a subclass
constructor and so cannot be used directly by the federate developer.

Two key methods are also automatically generated for each Instance class: setAttributeData
and getAttributeData. These methods cannot be implemented at the HLAObjectInstance level
since they require knowledge about the type of the data used for each attribute of the Instance.
It should be noted that these methods are not normally used by the federate developer because
they are called by either the FTKFederateAmbassador or the RFI. Nevertheless they provide a very
important service for the FTK:

setAttributeData(ftk::HANDLE h, const char* data, unsigned int size) is used by the generic
Federate Ambassador, which receives a callback to re
ect some attribute changes in the simu-
lation: the Federate Ambassador provides the handle on the attribute to update and a bu�er
of characters containing the associated data (as well as its size). This method un-serializes
the XDR encoded data and puts it in the correct data member of the instance.

getAttributeData(ftk::HANDLE h, char*& data, unsigned int& size) is used by the RFI
when it needs to update some attributes of an instance (to notify the RTI of changes in
the LRC of the federate): in this case, the RFI provides the handle of the attribute it needs
to update and is returned a bu�er with the corresponding data serialized as an XDR string.

2.6.3 Messages

Message classes like VesselDropAnchorMessage shown on Figure 12 on page 17, behave similarly
to Instances as described in the previous section. For each of these classes, three constructors are

10

generated for the same reasons mentioned above.
The Get methods return data associated which each parameter: they are used to read the

parameters of a received interaction message. The Set methods assign the given values to the right
data members but do not push them directly to the RTI: the send method will send an interaction
message to the RTI will all the parameters of this message.

The functionalities of getParameterData and setParameterData are the same as the getAttributeData
and setAttributeData de�ned above.

3 The tool: uml2hla

The tool unl2hla was created to fully automate the implementation of communication entities from
their UML description. The goal of this tool is to generate directly compilable code from a UML
description. The current realization of this tool relies on Rose, a commercial modeling software
from Rational, but the concepts could be easily applied to another environment7.

3.1 Concept

The work-
ow of the uml2hla tool is shown on Figure 7 and summarized below:

1. Communication entities are designed with UML diagrams in Rose.

2. Using a script, implementation classes are generated according to the proposed mapping. The
code for each method of the implementation classes is also generated by the script.

3. By forward engineering these Rose classes, C++ code is written to �les which can be compiled
without modi�cation or addition.

UML Design

Classes

UML

Implementation

Classes

C++ Code

(FTK based)

uml2hla

script

Rose Forward

Engineering

Figure 7: Work-
ow of the uml2hla tool.

The uml2hla tool comes as a Rational Rose Addin. This particular Addin is composed of:

� A property sheet which allows the designer to select HLA speci�c properties for packages,
classes, attributes and methods.

7The usage of Rational Rose brought two advantages for the rapid implementation of the tool. First, Rose fully
exposes its API to the developer with a set of Basic-Script classes, which allows easy parsing of UML models as
well as the creation of new model elements. Second, the ANSI C++ forward engineering capabilities of Rose is
used to generate the skeleton of the code as well as the �le dependencies (#include statements).

11

� A menu �le which enables a direct access to the tool functionalities.

� A set of scripts (written in Basic-Script) which generates implementation classes and associ-
ated code from a set of design classes.

Most of the work is done by the main script (which calls sub-scripts) which parses the given UML
design class diagram and generates the implementation classes. These implementation classes follow
the mappings described in the previous chapter. They contain inheritance relationships, attributes
and methods. In addition, the C++ code for each method is directly embedded in the class by
the script. These classes are added to the current Rose model in a new package and can then be
forward engineered. The implementation classes rely on the Federate ToolKit (FTK) which is also
part of the same Rose model: this allows the forward engineering process to resolve the correct
relationships between the classes.

3.2 Installation

A simple installation program is provided to setup correctly the uml2hla tool for Rose. This
program, called install.sh is a shell script ('sh') which make use of the 'sed' program. It should
then be usable on any Unix platform and under Windows with the Cygwin utilities.

If this script does not work, a manual installation could always be performed as follows (a look
at the previously mentioned script will give a detailed explanation of the procedure):

1. Create the directory where to put the hla Addin. You could also simply use the standard
distribution directory ($MSF_HOME/uml2hla) and then skip steps 2 and 3

2. Copy or link the menu and property (hla.mnu and hla.pty) �les into this directory

3. Copy or link the 3 scripts (uml2hla.ebs, objgen.ebs and msggen.ebs) into this directory

4. Change the hla.mnu �le to re
ect where the scripts are located

5. Change the hla.reg �le to re
ect where the Addin is located

6. Import the hla.reg into the registry using regedit

After having done the instalation automatically or manually, a new group of commands named
HLA should appear in the Tool Menu in Rose. In addition, a package speci�cation should present
a new HLA tab. If these two checks are OK, then the installation was probably successful.

3.3 Usage

3.3.1 Requirements

The �rst requirement to use the automatic generation tool is to open a Rose model, which, contains
the FTK package that is needed by the scripts (since the generated classes are FTK based). It is
also possible to create a new model and to import the $MSF_HOME/FTK/ftk.cat package in it.

12

3.3.2 De�ne the source classes

The design of the communication entities should be put in a Rose 'package'8. For this, create a
new package in the Logical View. Then open the speci�cation of the package and con�gure it to
be used with the uml2hla tool. As shown in Figure 8, several �elds in the HLA tab should be set
according to your needs:

FedFileName is the �le name of the federation �le which will be generated from the classes in this
package.

SubSystemName is the name of the generated Subsystem (package in the Component View) which
will contain all the components for the generated classes.

CategoryName speci�es the name of the generated Package (in the Logical View) where all the
generated classes will be produced.

CodeGenerationDir speci�es the directory (on your �lesystem) where the generated code will be
written. This directory should exist before running the code generation. Rose variables are
allowed in this �eld.

Figure 8: Speci�cations of a package containing design classes for communication entities.

In addition to the design package, one component (in the Component View) should also be
created and have the HLA Language assigned to it (one example is shown in Figure 9 on the next
page). This way, the design classes can then be assigned to this component9.

8Multiple packages containing design classes are allowed, but at least one should exist because the script act on a
complete package.

9It is possible to create one component with the HLA classes for each design classes, but it is not necessary since it
is only used to set the HLA language

13

The next step is to populate the design package with the classes representing the communication
entities. Each added classes should be assigned to a component being of HLA language.

The attributes of the class should be simply de�ned as usual. They could be left as public
since the script generating the implementation classes will convert them to private data members.
There is an additional HLA tab in the attribute speci�cation (as shown in Figure 10) which allows
to specify the characteristics of this attribute seen as an HLA attribute (Transport method and
Delivery mode).

The operations of the class should also be de�ned as usual. Their arguments will become HLA
parameters in the generated code.

Figure 9: Speci�cations of a component with the
Language set to HLA.

Figure 10: Additional speci�cations of an at-
tribute for the HLA language.

3.3.3 Generate implementation classes

Once all the design classes have been de�ned, it is possible to generate automatically the imple-
mentation classes. To do so, the icon of the design package should appear on a class diagram.
Select this icon and then go under Tools -> HLA -> Generate HLA classes for package name (if
this menu is not available, it means you did not select a package or you selected one but in the
browser view).

The \Generate HLA classes" command will launch the appropriate script to process the selected
package. The script opens a window which displays some information about the process. The script
will create one new subsystem and one new package according to the names de�ned in the design
package speci�cation (see previous section). If this subsystem or package already exists in the
Rose model, they will not be deleted. The script then generates all the necessary implementation
classes. If a class with the same name already exists in the implementation package, then it will be
completely cleaned up (remove attributes, operations, relationships), but not deleted: this allows
to keep coherency in existing diagrams showing it. The script also creates one component for

14

each generated class. These components are con�gured to generate C++ code with the correct
dependencies.

After the script completes, you should have a new package containing a set of generated classses
(which are inside the msf name space). Now, you can select individual classes and generate code
for them using the Rose forward engineering capability (ANSI C++ -> Generate Code). Note that
the code generation could also be done from the component view. Finally, care must be taken to
generate code for the classes in the order of their inheritance tree (this applies only for the depen-
dencies inside the generated classes): �rst begin to generate code for the parent classes and then
their children. In the presented example, there is inheritance only between VesselInstance and
SailingBoatInstance: this means you should �rst generate code for the class VesselInstance and
then for the class SailingBoatInstance. Otherwise, the generated �le SailingBoatInstance.h
will not contain the required include directive #include "VesselInstance.h".

4 Problems and Limitations

� The uml2hla.ebs script will crash when it tries to generate a class with a name which already
exists in another package.

15

SailingBoatObjClass

CLASS : const char* = "SailingBoat"
PARENT : const char* = "Vessel"
HEEL : const char* = "heel"

SailingBoatObjClass()
SailingBoatObjClass(obj : const SailingBoatObjClass&)
~SailingBoatObjClass()

SailingBoatInstance

_heel : int

SailingBoatInstance()
SailingBoatInstance(className : const char*)
SailingBoatInstance(h : ftk::HANDLE, cl : HLAObjectClass*)
~SailingBoatInstance()
setAttributeData(h : ftk::HANDLE, data : const char*, size : unsigned int) : bool
getAttributeData(h : ftk::HANDLE, data : char*&, size : unsigned int&) : bool
<<const>> heelGet() : int
heelSet(value : int) : void

SingletonHolder<SailingBoatObjClass>
<<anonymous_type>>

<<friend permission>>

Figure 11: Object Class and Instance details.

16

VesselDropAnchorMessage

_anchor : string
_chainLenght : float

VesselDropAnchorMessage()
VesselDropAnchorMessage(className : const char*)
VesselDropAnchorMessage(hic : HLAInteractionClass*)
~VesselDropAnchorMessage()
<<const>> anchorGet() : string
anchorSet(value : string) : void
<<const>> chainLenghtGet() : float
chainLenghtSet(value : float) : void
setParameterData(h : ftk::HANDLE, data : const char*, size : unsigned int) : bool
getParameterData(h : ftk::HANDLE, data : char*&, size : unsigned int&) : bool

VesselDropAnchorInteraction

CLASS : const char* = "VesselDropAnchor"
PARENT : const char* = "VesselInteraction"
ANCHOR : const char* = "anchor"
CHAINLENGHT : const char* = "chainLenght"

VesselDropAnchorInteraction()
VesselDropAnchorInteraction(obj : const VesselDropAnchorInteraction&)
~VesselDropAnchorInteraction()

SingletonHolder<VesselDropAnchorInteraction>
<<anonymous_type>>

<<friend permission>>

Figure 12: Interaction and Message details.

17

